Α
Byzantine mathematical method of calculating
the area of a geometric shape related
to the determination of the tax
Στὸ κεφάλαιο 222 τοῦ Codex Vindobonensis phil. gr. 65 ὁ ἀνώνυμος συγγραφέας ἀναφέρεται καὶ σὲ ἐμβαδὰ συνθέτων σχημάτων. Τὰ σχήματα αὐτὰ ἀποτελοῦνται ἀπὸ ἄλλα ἁπλούστερα (τρίγωνα, τετράγωνα, παραλληλόγραμμα, κύκλους, κ. ἄ), τῶν ὁποίων τὸ ἐμβαδὸν ὑπολογίζεται μὲ τὶς μεθόδους ποὺ ὁ συγγραφέας ἔχει ἤδη περιγράψει στὰ ἀντίστοιχα κεφάλαια. Παρατηρεῖ δέ, πὼς γενικὰ δὲν ὑπάρχει σύνθετο σχῆμα τοῦ ὁποίου τὸ ἐμβαδὸν νὰ μὴν ὑπολογίζεται μὲ αὐτὲς τὶς μεθόδους.
Ὡς γνωστόν, οἱ Βυζαντινοὶ ὑπολόγιζαν κατὰ προσέγγιση τὸ ἐμβαδὸν ἐκτάσεων ἀκανονίστου σχήματος, βάσει τῆς περιμέτρου τους[1].
Ὡς παράδειγμα ἀναφέρω μὴ κυρτὸ πολυγωνικὸ σχῆμα μὲ πλευρὲς 30, 8, 10, 20, 80, 2, 1, 5, 68 σχοινία. Ἡ περίμετρός του εἶναι ἴση μὲ 224 σχοινία.
Ὡς παράδειγμα ἀναφέρω μὴ κυρτὸ πολυγωνικὸ σχῆμα μὲ πλευρὲς 30, 8, 10, 20, 80, 2, 1, 5, 68 σχοινία. Ἡ περίμετρός του εἶναι ἴση μὲ 224 σχοινία.
Ἀφαιροῦσαν
1 σχοινίο γιὰ κάθε 20 σχοινία "λόγω τῶν ὑπερβολῶν καὶ τῶν ἐλλείψεων".
Θὰ ἔπρεπε
νὰ εἶχαν λοιπόν: 224-11=213.
Ἀντ' αὐτοῦ,
ὅμως, ἀφαιροῦσαν τὸ 11 ἀπὸ τὸ 223 καὶ εἶχαν 212 σχοινία.
Κατόπιν
ἔκαναν τὶς ἑξῆς πράξεις: 212/2=106,
106/2=53,
53.53=2809 σχοινία, ἢ 1404 1/2 μοδία.
Αὐτὴ ἡ προσεγγιστική τους μέθοδος ἀποσκοποῦσε στὴν ἀλλοίωση τοῦ ἀποτελέσματος γιὰ φορολογικοὺς λόγους. Ὁ συγγραφέας μας λοιπόν, ἢ ἀγνοεῖ τὴν συγκεκριμένη μέθοδο, ἢ τὴν παραλείπει σκοπίμως. Ἡ σκόπιμη παράλειψη θὰ μποροῦσε νὰ ἐξηγηθεῖ, ἂν μὲ τὸ ἔργο του ἀπέβλεπε σὲ διδακτικοὺς σκοποὺς μᾶλλον, μολονότι αὐτὸ περιέχει καὶ ἐφαρμογὲς τῆς θεωρίας, καθὼς καὶ πρακτικὰ προβλήματα τῆς καθημερινῆς ζωῆς. Πιθανὸν νὰ ἀπευθυνόταν σὲ μαθητὲς σχολείου καὶ σὲ ἐπαγγελματίες (π.χ. ἐμπόρους, χειροτέχνες, πρωτομάστορες στὶς οἰκοδομές[2], ὀπτικούς, ἀρχιτέκτονες, κ.λπ.), οἱ ὁποῖοι οὐδεμία σχέση εἶχαν μὲ τὴ φορολογία καὶ τὶς πρακτικές της.
Ἐξάλλου οἱ μορφωμένοι Βυζαντινοὶ ἔδειχναν ἐνδιαφέρον γιὰ τὸ ἔργο τοῦ Ἥρωνα τοῦ Ἀλεξανδρέα, ὁ ὁποῖος θεωρεῖτο
χρήσιμος καὶ σὲ διάφορα ἐπαγγέλματα, ἐκτὸς αὐτῶν ποὺ σχετίζονταν μὲ μετρήσεις
μὲ σκοπὸ τὸν προσδιορισμὸ τοῦ φόρου,[3] ἀλλὰ στὸ Βυζάντιο ὑπῆρχαν καὶ τεχνικὲς σχολές, τὶς ὁποῖες ἵδρυσε ὁ Κωνσταντίνος Θ Μονομάχος,
ὅπως ὑποδηλώνουν χωρία τῆς "νεαρᾶς
τοῦ 1047", προκειμένου νὰ ἐνισχύσει τὴν τάξη τῶν ἐμπόρων καὶ τῶν βιοτεχνῶν.[4]
[1] Lefort et al., Géom. fisc Byz., σελ. 71.
[3] Lefort et al., Géom. fisc Byz., σελ. 31, 253.
[4] Σταυρούλα Χονδρίδου, Ὁ Κωνσταντίνος Θ Μονομάχος καὶ ἡ εἰσαγωγὴ τῆς τεχνικῆς ἐκπαίδευσης, Πρακτικὰ Α΄
Συνεδρίου Βυζαντινολόγων Ἑλλάδος καὶ Κύπρου, Ἰωάννινα 1999, σελ.151.
SOURCE: MARIA CHALKOU, THE MATHEMATICAL CONTENT OF THE CODEX VINDOBONENSIS PHIL. GR. 65 OF THE 15TH CENT. INTRODUCTION, EDITION AND COMMENTS, PUB. BYZANTINE RESEARCH CENTER, ARISTOTELEAN UNIVERSITY OF THESSALONIKI, JUNE 2006.
The book -source at the University of Illinois
SOURCE: MARIA CHALKOU, THE MATHEMATICAL CONTENT OF THE CODEX VINDOBONENSIS PHIL. GR. 65 OF THE 15TH CENT. INTRODUCTION, EDITION AND COMMENTS, PUB. BYZANTINE RESEARCH CENTER, ARISTOTELEAN UNIVERSITY OF THESSALONIKI, JUNE 2006.
The book -source at the University of Illinois
THE THIRD EDITION (2014) AS AN EBOOK
with title: Ta Vyzantina Mathematika, The Codex Vindobonensis phil. gr. 65 of
the 15th cent. vol. II (Geometria-Geodaisia), Athens 2014,
pp. 22, 23.
The
third edition at Harvard University (search: Chalkou Maria)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου